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Summary of Completed Work

The object of this grant is the analysis and design of decision procedures
that have stable, good performance in statistically ill-defined environments. =
Such procedures indicate the way to design powerful receivers for systems
whose statistical behavior can not be described precisely (due to incomplete
availability of data about the system behavior).

In the framework of this idea the following progress has been already made:

1. Different distance measures have been studied for use as

performance criteria for robust estimates. Careful evaluation and comparison

of these distances was done and their similarities, advantages and disadvantages

were carefully stated. It was observed that some of these distances are more g

naturally related to the estimation problem and that in cases in which they

are equivalent, the designer may use the one that is computationally or
structurally more convenient. The use of the Vasershtein distance was proposed
and used as stability measure for estimates in statistically contaminated
environments. This distance is naturally related to the commonly used performance

measures in parameter estimation. Through the use of the Vasershtein distance,

qualities of powerful robust (with uniformly good performance inside a family

of data statistics) estimates were found, when the observable data are dependent.
For dependent data also robust estimates that perform well in the presence of

small number of discrete data were studied. Such analysis is valuable in cases

| ool

that the engineer must make his decision in real time.

Some of the work mentioned in this paragraph is included in this report, whileiﬁ;‘“
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some of it is still in progress.




2. A thorough study of the work already accomplished (by the author
as well as other investigators) on nonparametric statistical procedures in
the presence of small number of discrete data was done and included in a

book on the use of nonparametric procedures in Communication Systems.

3. A feature selection problem was studied, when several distance
measures are used as discrimination criteria. This helped for a better
understanding of the qualities of the distances. It was found that the
feature extraction algorithm is sometimes independent of the criterion.
This allows the maintenance of a single feature construction mechanism that
works equally well for several systems with different specifications. This

feature selection algorithm is then robust.

4. A sequencial procedure for clustered data was proposed and analyzed.
This procedure applies to several stages of statistical information about the
system and it varies from the known procedures in the fact that data collection
costs are included and the data clusters considered are finite in number.

The results are therefore nonasynpotic and they apply to any problem in which

the data are collected sequentially in clusters and there is a preassigned

maximum number of such clusters available. The results have been tested
numerically for some systems with given specifications.

5. Hampel's general qualitative definition of robustness of sequences
of estimators on memoryless observation processes was generalized to stationary
processes, Structural properties of the estimates were found in this case
and based on these properties the design of robust estimates that operate on

dependent data is now in progress.
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6. The constructive analysis of robustness completed by the author is
being used now in the performance analysis of communication Networks at
Bell Laboratories.

7. The discrimination of Gaussian processes has been studied and efficient
computationally methods have been found. This method leads also to efficient
discrimination of contaminated Gaussian processes.

In twelve months, one Ph.D. thesis and one book have been partially
supported by this grant, three papers have been submitted to journals, four
conference presentations have been made, two University and three Bell
Laboratories reports have been produced. Finally, two seminars at Bell
Telephone Laboratories have been presented.

In what follows, a list of publications supported by this grant, and
some of the work accomplished that is not included in the semiannual report

dated May 6, 1976, are presented.
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Activities Supported by AFOSR

Ph.D. Thesis Completed:

1. R.Y.S. Li, '""Methods for Data Reduction,' May 1977.

Books Published:

1. P. Papantoni-Kazakos and D. Kazakos, editors and contributors,
'"Nonparametric Methods in Communications. Selected Topics."
Marcel Dekker Inc., New York 1977.

Papers Submitted to Journals:

1. P. Papantoni-Kazakos, ''Some Distance Measures and Their use in a
Feature Selection Problem."

2. P. Papantoni-Kazakos and R. M. Gray, ''Robustness of Estimators on
Stationary Observation."

3. D. Kazakos and P. Papantoni-Kazakos, ''Asymptotic Discrimination of
Gaussian Processes.

Conference Presentations:

1. P. Papantoni-Kazakos, ''Some distance measures and their use in feature
selection,'" Eleventh Annual Conference on Information Sciences and
Systems, The Johns Hopkins University.

2. P. Papantoni-Kazakos, D. Kazakos and R. Li, "A Kalman Filtering
Formulation for the Linear Reduction of Gaus-Markov Data,'' Eleventh
Annual Conference on Information Sciences and Systems, The Johns
Hopkins University.

3. D. Kazakos and P. Papantoni-Kazakos, ''Robust Rate Distortion,"
International Symposium on Information Theory, 1977.

4, P. Papantoni-Kazakos, ''Some Problems in Communication Networks,"
Fifteenth Annual Allerton Conference on Cricuit and System Theory, 1977.
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University Reports:

1. P. Papantoni-Kazakos, ''Some Distance Measures and Their use in
Feature Selection,'!' Rice University E.E. Technical Report #7611,
November 1976.

2. P. Papantoni-Kazakos, ''Some New Performance Criteria in Robust

Statistics - Small Sample Robustness,' Technical Report #7701,
January 1977.

Bell Laboratories Technical Memoranda:

1. P. Papantoni-Kazakos, ''Some Distance Measures and Their Use in
Feature Selection,' TM-77~3452-5, July 12, 1977.

2. P. Papantoni~Kazakos, ''Some Performance Criteria Incorporating
Data Dependence in Robust Estimation,'' TM-77-3452-4, July 12, 1977. a

3. P. Papantoni-Kazakos and R. M. Gray, ''Robustness of Estimation on
Stationary Observations,! TM-77-3452-7, September 20, 1977.

Seminars Presented:

I. P. Papantoni-Kazakos, ''The Vasershtein Distance in the Constructive
Analysis of Robust Estimates,'' Bell Telephone Laboratories, Holmdel,
New Jersey, April 1977.

2. P. Papantoni-Kazakos, '"Robust Estimators on Stationary Observations,'!
Bell Telephone Laboratories, Holmdel, New Jersey, October 1977.




Comments on the Accomplished Work From Scientists in the Field

The constructive analysis of robustness with the use of a Vasershtein
stability criterion has been considered as more naturally incorporation the
proper performance criteria in parameter estimation by people at Stanford
University and Bell Telephone Laboratories, that | talked to. Also, the
extension of the analysis to data evolving from general stationary process
(rather than just process with independent data), has been considered important
for the understanding of robust estimates in the presence of dependent data
structures.

The study and evaluation of different distance measures and their
applications to the feature selection problem has been considered valuable
by attendies of the 1977 Johns Hopkins Conference. The different distance
measures are used as different discriminant measures, each representing a
different class of problems. Their uniform evaluation and comparison that
has not been done before and the analysis of their value to the feature
extraction problem has been considered a nice contribution.

The sequencial decision scheme included in the thesis enclosed here, and
more particular its version for two nonparmetric distinct classes has been
considered very valuable by scientists in pattern recognition. |Its use allows
data savings as well as good performance for discrimination between two

statistically ill-defined data classes.

Workshops Attended:

1. 1977 Communications Workshop, Tuscon, Arizona, April 1977.




il i

SOME PROBLEMS IN COMMUNICATION NETWORKS

by

P. Papantoni-Kazakos
Bell Laboratories

ABSTRACT

A general discussion is presented on some of the open problems

in communication networks. Routing structures and causes for unsuccess-

] ful communication through the network are emphasized. Some open problems
involving sophisticated parametric as well as robust statistical

algorithms are stated.

Work done at Rice University and supported by the Air Force Grant
AFOSR 77-3156




l. Description of the Network

To understand some of the problems involved in reliably communicating
messages within the network, some basic network operations must be described.

The smallest element (that is of any interest to the network analyst)
in a communication network is a center. A center consists of several units
that conmunicate directly with each other. Different centers communicate
through a number of routes, where each time the route one particular message
is carried on is chosen hierarchically. Each route consists of a number of
links that are, in general, connected to each other through tandems (switching
offices). Finally, each link consists of a number of single message carriers
that are called trunks, while the tandems connect several centers. A message
originating at center A (figure 1) and with destination another center B
follows a routing hierarchy described as follows:

At first tries the direct route that consists of a single link
connecting the two centers (dotted line in figure 1). |If all the trunks in
this link are functioning properly but are busy, the message tries the next

route in the hierarchy (route through A, T., B in figure 1). 1f this route

l'
is also well functioning but busy, the message tries the next route in

hierarchy and so on, until it reaches the final route available to it (route

A T2T3B in figure 1). |If this last route is busy or malfunctioning, the

message fails to go through and a communication failure to B is recorded

at A.
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The rejection of the message by a particular route due to full occupancy
(at the moment) of all trunks involved is called blocking. Under healthy
network conditions blocking probabilities can be assigned to each route
that correspond to a particular center pair (A,B) and are functions of the
A to B communication load, the number of routes connecting AeB, and the
number of trunks in each such route.

Suppose now that an ''average load' time period is considered and the
communication from center A to center B is studied. If in some of the routes
between A and B a link is malfunctioning (due to some faulty trunk), and
if center A is unaware of the malfunction, messages from A to B will keep
trying this link with probability specified by the initial routing structure
and the ''average load''. As a resuit to that some messages will be killed
by the malfunctioning link and communication failures from A to B will be
recorded. Therefore, in the presence of faulty links which center A is
unaware of, communication failures will be caused that are not just due to
overload and are not happening just at the highest in hierarchy route.

The routing structure described above is based on a trade off between
economy and communication efficiency. The direct links (dotted line in
figure 1) carry usually the highest portion of the message load, while the
higher in hierarchy alternate routes are used during traffic picks and they
have capacity high enough to secure good communication when such picks are

occurring and low enough so that they do not remain idle most of the time.




The performance of the network, as viewed by the users, is measured
through its ability to successfully respond to communication attempts.
It efficiency as viewed by an outside observer is a combination of two
factors: effectiveness in responding to communication demands, and average

degree of occupancy.

2. Some Open Problems

We are concentrating here on the performance evaluation of the network.
The following major question arises in this case:
! Is it possible to evaluate the network per’rmance at a particular
time, if yes what kind of data are required anc ow can such an evaluation

be effective without utilizing an excessive amount of information? Also,

attractive methods?

In two Bell Labs technical memoranda that have not been cleared for
publication yet, the author analyzes the use of limited center-to-center
successful and unsuccessful communication completions for locating the
faulty links that cause the failures, and for continuously monitoring the

quality in communication throughout the network. The algorithms used are

but also because they are one step memory and computationally efficient.
However, assumptions as to the routing structures have been made that in
some cases need relaxation. Specifically, '"average load' time periods are

observed and the routing probabilities are then considered unchanged. But,

how can malfunctions be localized or even predicted with the use of economically

economical not only because they only utilize a limited amount of information,



even during such time periods the load fluctuations may be momentarily
substantial, In which case ''robust' algorithms that are mostly insensitive

to such load variations must be developed.

Furthermore, the effect of malfunctioning network links to the relation-
ship between communication messages through them must be studied further.
Specifically, such links may cause ''‘partial message killing'' as well as
interference between messages. These effects result in additional reduction

of the communication quality within the network.
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Asymptotic Discrimination of Gaussian Processes

Dimitri Kazakos* and Titsa Papantoni-Kazakos**
State University of New York at Buffalb
and

Bell Laboratories
ABSTRACT

We present a theory on the asymptotic approximation of block Toeplitz
matrices by block circulant ones. The method is then applied to the
cﬁlculation of the asymptogic Bhattacharyya distance Bn and divergence Jn
between two stationary vector Gaussian processes, in terms of the two
spectral density matrices, Fl(x), Fz(k). Specifically,

2w
B=1lima ' B = (2m)7" I log(|27'F (1) + 27 R, )] -
o

n-+e

—1{2 |-1/2

- R |F, (0 }da

<3 Y f*e i
J = 1lim n Jn = (2n) I trace [Fl(J\)F2 (A) +
o

n+o

-1
FZ(A)F1 (A) - 2I]da

The above expressions are useful because of existing upper and lower
bounds to the Bayes error of misclassification. Furthermore, they can
be considered as distance measures in their own right. The availability

of efficient spectral estimation techniques renders them most useful.

* Research supported by NSF Grant ENG 76 20295.

** Research supported by Air Force Grant AFOSR 77-3156.
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I. INTRODUCTION

It is well known that the Bayes decision rule is the optimal one

in deciding between two statistical hypotheses with known prior probabilities

and conditional probability density functions. One of the most common
statistical models for data is the Gaussian random process. In assessing
the performance of the statistical classifier using the Bayes decision
rule, one is‘faced with the difficult task of evaluating its performance
thr&ugh the available expression for the probability of misclassification,
Pe:

Pe = I min[nlfl(xn),Anzfz(xn)‘]dxn (1)

kxn

where

fl(xn), fz(xn) are the conditional p.d.f. and T W, are the prior

2
probabilities of hypotheses Hl, Hz. Clearly, numerical integration
techniques have to be used. Due to the high dimension of the integration
region, numerical techniques are costly and they do not provide under-
standing of the influence of several parameters of interest in fl’ fz to

Pe. For example, if one wishes to reduce the data by sbme feature selection
techniques, the expression (1) cannot by useful in choosing the optimal
transformation of x". Also, (1) does not provide any feeling as to the

incremental reduction of Pe as n grows.

The following pair of bounds to Pe is known: [1]-(4]

2-1n1n2 exp{-znn} < Pe < (u1ﬂ2)1/2 exp(-Bn} (2)

AR AN . ! e P
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87! exp(-271J ) < Pe (3)
vhere:

B~ -log f [fl(x“>f2(x“>11’ 2ax" (4)

3 - J (£, ™) - £, 110gle, M ;1 () Jax” (5)

A lower bound tighter than (3) has been developed in [5]. It has
been shown in [ 6] that no upper bound to Pe in terms of Jn exists. In

the present paper, we will develop asymptotic expressions for

B ting > B " = e T I (6)

n+w 0 ) n-+w
in terms of the spectral density matrices Fl(k), FZ(A). The motivation
lies in the fact that the spectral densities are among the first char-
acteristics of a process to be measured, and very efficient spectral estimation
techniques are available in the statistical literature. [ 7]1-[10].

The technique to be used is, we think, interesting by itself, and
useful in other applications. It is based on the asymptotic approximation
of block Toeplitz matrices by block circulant ones. A similiar technique
was used in [11] - [13] for evaluation of rate-distortion functions.

The distance measures derived have several potential épplications,
which are discussed briefly in the section th#t follows. Those‘are:

.(a) Feature selection in high-dimensional observation spaces

in pattern recognition.

(b) Clustering algorithms for the same situations as in (a).

(c) Reduction of remote sensing data.

(d) Speech processing.

(e) Biémedical EEG signal analysis.

(f) Tone Detection in Telephone Networks.
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II. ASYMPTOTIC APPROXIMATIONS

A block Toeplitz knxkn matrix R—n has the form:

e R W .
R . .
Rn - ‘ . . . . (7)
: : %
L b By

where R, are kxk matrices. A block circulant knxkn matrix q has the form:

i
B R e
n-1 co c1 5
Cn e . - . - . (8)
. - Y . C2
. (Y - Cl
8 cl . . . . n_l Co 5

where C:l are kxk matrices. Consider the knxkn matrix
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Ik Ik Ik - ” Ik
L w wzlk el w“'llk
2 4 2(n-1)
Ik w Ik w 1k - . . w 1k
1
vn ﬁ . . . L]
m 2 (n-1)
Ik w Ik w mIk . . # w mjk
AR w2 -l), w(n-l)zl
" K Kk k_

where w = exp(12nn.1).

It can be easily shown that Vn is a unitary matrix, i.e.:

Mgt R R lvnl =1 (10)
Consider now the matrix

v E Y e

C =
n- n n n n nn

Performing the multiplication (11), we observe that Cn is block diagonal:
" €(0) ;

G - . (12)

L ’C(Ztn-l(n-i)L

=veCc Vv (11)

(9




where, C(u) is a kxk matrix function defined as:
n-1
C(u) = X Clll exp (-imu) (13)
m=0

Consider, now the problem of finding the eigenvalues of E;. They are

solutions of the equation in x:

.; = -1 t -
. lcn o xIknl Ivn (Cn - kan)vnI 3 Icn 5 xIknl a

n-1 Sl
= I |c(2mm ) - kal (14)
m=0
Thus, the kn eigenvalues of Cn are identical to the union of n sets of

eigenvalues of the matrices {C(ann—l) ,m=0, . . ., n-1}. Let us

now define the weak norm of an sxs matrix A = {a,,k} as:

i)

-3 s S
1] = Pt B Iaijlzlllz oty lq1|2]1/2 as)
i=1 j=1 i=1

where (q1 e qs) are the eigenvalues of A. Also, we define the

strong norm || A || as:

lAll = max |q,| (16)
i :
If aij are kxk matrices and A is ksxks, we still have:
e .8
- 2
=t 11 lag,l an
i=1 j=1

Let (An}. {Bn} be two sequences of Hermitian sxs matrices. We say that
they exhibit "mutual approximation', denoted by An N Bn’ if:
a) ||An||, ||Bnl|, lAnl, anl are all bounded from above by a

finite number M independent of n.

b) 1lim 1An - nnl- 0 (18)
nse




(n)}“
k k=1

(n),n
Let {a o {bk )k-l be the eigenvalues of A Bn correspondingly.

(n)} )

We say that the sets (ak (bin)} are "asymptotically equally distributed"

in the interval [-M,M] if
(n) (n)
la, | <® . b, <M,V kn
and for any contindous function f(+) on [-M,M] we have

n
1mat ] (£a(™) - f(bin))] -0 (19)
n -+ o k=1

The following theorem of Grenander and Szego [14] will be used.

Theorem 1: Let (An}; (Bn) be two sequences of Hermitian matrices

(n) (n
with eigenvalues {ak | 3 {bk )}. 1f A Bn’ and either limlAnl

n-o

or limlnnl exists, then {aén)}, (bin)) are asymptotically equally
n->we

distributed.

We have found until now that the kn eigenvalues of a block circulant
matrix of the type (8) are grouped according to (14). However, we are
interested in asymptotic expressions of eigenvalues of covariance matrices
of the type (7) with R—k = Rk' We will therefore approximate the block

symmetric Toeplitz matrix

- -
R, R : i R
R : :
R = (20)
. . R,
[ Moz ‘ Ry Ry

by the block circulant one.




There is no unique approximation by a block circulant. A convenient
one will be chosen next. It is a matrix generalization of the circulant
approximation used by Grenander and Szego [14]. Let F(A) be the spectral

density of the stationary random process in question. We assume that

sup|F(A)| < M < =
A

(21)
0 <m < inf|F())|
A )
Let
(1-|x|/p) R, for |k| < p <n
0 Otherwise
=1 1
R™ = {R } 23
n [1-3]7 - (23)
and
- =ik
POy = b a-lel/p Re 1 - ) R e K (24)
P k=-p k=-p
Consider the blockrcirculant matrix
- -1
L =VLUV (25)
n nnn
where Ln is a block diagonal, with diagonal blocks:
(L} =F (2mmnY) (26)
T n mm P
and where Vn is given by (9). It is easily shown that:
- -1 % 2rij(m-s)n”t -1
{(L} =n ) e F (27jn ) (27)
n-'ms $=1 P ;

— Geis b ) o




We need to calculate the differences

= =12 =1 = ,2
I-Ln Z Rnl 3 an S Rnl

We have:

n ‘o
E - Rilz =l J mLRilz <2pnt J lkmlz (28)
m-1 m-1

IR - [? <2t ) w’p 2-m|r |+ 2™ ] a-mr |? (29
m=1 m=p+1
Due to (21) we have

E lkmjz P

m=0

-]
and thus for a given € > 0 we can pick a p so large that Z llez < €.
m=p+1

By choosing first p and then n sufficiently large, we can make the

distance [f -R l sufficiently small, i.e.:
n n

1/2 1 /2

£ -®]<kpn 24 ot + 207 (30)

i; is Hermitian and bounded, and its nk eigenvalues are the union of the
eigenvalues of the n matrices (F (Zwmn_l) S S SRR IR
Let hq(p,u) be the qth largest eigenvalue of Fp(u). It can be easily
shown that hq(p,u) is a continuous function of u. According to Theorem 1,
for any continuously differentiable function g on [m,M], we have:
T -1 1 I
lim n I glh (p,2mmn )] = (2n) I glh_(p,u)]du (31)
nio m=1 q o q

Also,
2% 27

IJ (g[hq<p.u)1 - slhq(u)lldul <A- J Ihq(p.u> - hq(u)ldu (32)
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where hq(u) is the qth eigenvalue of F(u) and A is a bound on the first
derivative of g. Thus, as p?«, the right side of (32) goes to O.
In conclusion, if p,n** in the manner prescribed in the development

of (30), we will have:

RO -1 -1 [

limn = ] glh_(p,2mmn )] = (27) I glh_(u)ldu (33)

n,p>> m=1 q o q
(33) was developed by an asymptotic approximation of the block circulant
matrix i; by the block circulant matrix i;. Simpler block circulant

approximations to i; may be developed, along the lines of [15], [16],[17]

" but this would require more restrictive conditions on Fl(l), FZ(A) than

(21).
In the following section we will apply equation (33) to the calculation

of the asymptotic expressions given in the abstract.
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III. ASYMPTOTIC EXPRESSIONS

We are now considering two stationary, k-dimensional vector
n
Gaussian processes. Let x = (x1 Wl xn) be a sequence of n vector, zero mean

observations, and let the corresponding covariance matrices be:

R, = E[xn(xn)tlﬂj] , 3=1,2

nj
= A -
Roj le ¥ . Rn_l'j
le Roj -
,an = . s - 3
_Rn-l . 5 a Ro j J

The Bhattacharyya distance Bn is then expressed as:

-1= -1- -1, = -1<
2B log|2 R, +2 anl -2 loglknll -2 anzl (35)
and the divefgence:
23 = trace (R 22+ 1R . - 21 (36)
n nl n2 nl n2

For the calculation of B, we observe that:

-1 o -1 nk
n log[Rnll =n 121 log din

where (din) are the kn eigenvalues of i; According to the theory,

1
they are asymptotically equally distributed to the eigenvalues of a

block circulant approximation EQ' Thus,

—



= i -1 1 -1 _ =1 ~1
R RovEL - 3L v VL VL .L .V (40)

nl n2 nl n 2 nnl n2'n

where Vn is the unitary matrix (9), and Lnl' an are block diagonal

matrices corresponding to the two p-modifications of the spectral densities

as specified by (23), (24). Thus, the mth diagonal block of L nl ; is:
~1 -1, -1 -1
(LnlL Z)Mn Fpl(ann ) sz(Zwmn ) (41)
where
-ikA
Fps(k) E (1—|k|/p) Rkse ’ s =1,2 (42)

k=-p
The kn eigenvalues of inligé are thus asymptotically equally distributed

to the union of eigenvalues of the n kxk matrices
-1, -1 -1
{Fpl(ann )Fp2(2nmn T T R

Let hq(p,ann-l) be the qth ordered eigenvalue of the matrix

Fpl(ann-l)F;;(ann_l). Using (33) with g(x) = x, we find:
2n

-1 ¢ -1 -1[
lim n = )} h (p,2mmn ") = (2m) h_(u)du (43)
n, po m=1 9 0 q

where, hq(u) is the qth ordered eigenvalue of Fl(u)Fgl(u). Summing over

q, we have:

2n
lim n 1trace Rl R = (2n) I trace Fl(A)FEI(A)dk (44)
niwo o

Collecting terms, we find:

R <1 -1
23 = (21) J trace[F  (WF; (1) + F,(VF; () - 21)ar (45)
(o]

It is interesting that (45) can stand on its own as a distance measure.

(45) has found applicability is speech processing, for measuring the




distance between two sounds in a subjectively meaningful way [19]. 1In
[19]), the scalar case k=1 was utilized.

Other applications of the two new distanc: measures are envisioned
in EEG signal analysis [20]-[22]. It is also plausible that a distance
measure of the type (43) or (38) may be a good clustering criterion -
the space of spectral densities. If one wishes to 'cluster" EEG's
for the purpose of identifying ''disease clusters'", (38) and (43) may be
useful measures due to the availability of spectral density estimates
of EEG's [20]. Furthermore, the association of (38), (43) with the
probsbility of misclassification, is an intuitively appealing factor.

It can be easily shown that J(Fl,Fz) is convex in FZ for fixed Fl,
while B is neither convex nor concave. This is an advantage in favor
of J. On the other hand, B provides better bounding expressions to the
probability of misclassification than J does.

The geometry of Jn in the space of probability measures has been
analyzed in [ 23], [24], and several convenient geometrical properties were
established.

A criticism against Bn is that it is not a true distance measure
because it does not satisfy the triangular condition. However, we shall
show that there is a.one—to—one correspondence of Bn to a proper
distance measure.

Let

o= H (£, (M), £ (xM) = ( J (/2™ - f;/z(xn)ﬁdxn}l/z (46)

Hn is the Hellinger distance [l ] between fl(xn). fz(xn), and obviously

satisfies the triangle condition. Furthermore,

ST
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Drawing further from the results of [14], we can show that:

-1 -1/2

In B~ Bl < kyn (48)

Thus,
n -1
exp(-Bn) b dn
-1 -1/2

where b = exp(-B), dn = exp(con ). Substituting inm (45), we have:

b = d [1-2"tw2)t/" (49)

n n

As nwo, dn+l, thus

b = [1-2"1Hfl 1fa (50)

Equations (47), (48) give a one-to-one correspondence between b and Hn.
The function relating them is dependent on n, but has a simple structure.

In Figure 1 the functioral relationship is drawn.

Experts in fhe Areas of feature selection and clustering techniques
in Statistical Pattern Recognition have observed [25] - [29]) that both
methods are computationally expensive and exhibit strange behavior in
high-dimensional measurement spaces. It is envisioned that the following
two-step techniques mey alleviate the above problems.

(I) Clustering

(Ia) Estimation of the spectral density Fi(x) from the ith

observation record

I (0 k20 , Awl <.y




(Ib) Clustering the M records in the space of the measured
Fi(x) and using as distance measures the numbers B or J.

(II) Feature Selection

(I1a) Same as (Ia). For M=2.
(IIb) Find the linear kxs, s < k transformation A that reduces
the amount of data and maximizes J or B.

The point of view in proposing tha above methods is as follows. In
practice, any time series (xi(k), 1 < k < T} observed for a long time
interval T, exhibits statistical dependence only for pairs of samples
that are neighbors in time. In clustering T-dimensional vectors by the
usual techniques, a large T will impose substantial computing resource
requirements. Furthermore, the convergence of clustering procedures may
be in doubt, and the statistical independence between distant samples
is not utilized. It is believed that the idea of fitting models to the
data and then clustering ihe models according to J or B in a low-

dimensional space may alleviate the stated difficulties.

Figure 1
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s Introduction

In his classic paper, Hampel (1971) introduced a definition

of robustness in parameter estimation that accurately reflected the intui-

tive notion that a sequence of estimates of a parameter was robust for an
observation process u if another process v that was "close" to p yielded
a "close" distribution on the parameter estimates. Hampel considered
memoryless or independent, identically distributed (i.i.d.) observation
processes and measured their "closeness" by the Prohorov distance on the
marginal probability measures. As he considered i.i.d. processes, his !
underlying parameter depended implicitly only on these unknown marginals.
Hampel then proved that weak‘ continuwous functionals on the space of i
probability distributions defined robust sequences of estimators under
his assumptions. He also showed his results could be adapted via an
alternative notion of robustness to weakly dependent observations, in
particular, observations that were close to memoryless in a Prohorov sense.
A critical part of his derivation was the fact that if two i.i.d.
processes U and V are close in e marginal Prohorov sense, then one could
construct a pair process p having U and vV as coordinate processes and such
that under p the sample distributions of two coordinate n-tuples x° produced

by v and yn produced by v were close in a Prohorov sense with high probability.

¥P. Papantoni-Kazakos completed this work at Rice University, Houston, Texas.
tR. M. Gray is with Stanford University.

Frhis research was supported by the Air Force Office of Scientific Research }
under AFOSRA Grant TT7-3156 and AFOSR Contract Fli 620-73-C-0065.




During the past few years, a generalization of Ornstein's d distance of

ergodic theory (called the :; "rho-bar," or generalized Ornstein distance)
has been shown to provide a similar control for sample distributions for
general stationary and ergodic processes and, largely as a result, has
found numerous applications in information theory (see, e.g., Gray,
Neuhoff and Shields (1975), Gray, Neuhoff, and Onura (1975), Gray, Neuhoff
and Ornstein (1975)). In this paper we show that using the p distance
as a measure of closeness of the observation processes, there is a natural
qualitative definition of robustness for all stationary ergodic processes,
that a weakened version of Hampel's weak-continuous estimator sequence
implies robustness and that all of Hampel's results have analogs in this
more general case. Our formalism does not quite contain Hampel's in the
case of i.i.d. processes and parameters depending only on the marginal
probabilities, but is & strict generalization in some cases such as when
the metric on the obse;vation alphabet is bounded or when the class of
probability measures considered is constrained to have a finite secénd
moment (see Lemma 2.1).

We also note that we ni?d not cbnfine estimates to take values in
Rk as Hampel does, but instead we only require that the parameter alpha-
bet be a complete, separable metric (Polish) space. Hence function valued
parameter spaces are allowed.

As a side result, some easy generalizations of the convergence of
sample distributions [Parthasarathy (1967)] for stationary and ergodic

processes are developed.
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2. Preliminaries

Let (Q, 30) be a measurable space such that Q 1is a complete,
separable metric space (or Polish space) with metric p and Sn is
the Borel gs-field generated by the open sets under p. Since Q 1is

separable, there is a countable collection of sets gg = (G i=1,2,..

i

Q
Let Qn be the space of n-tuples with coordinates in Q and d'

such that 8 _ = o(gn), that is, sn is the g-field generated by Qn.

the space of sequences w = (....u_l.wo,ul,...). mie Q all i, Let

3; be the g-field of subsets generated by all rectangles of the form

n-1 ; n _ n
i=081' Bi' LQ (since Q 1is Polish 39 = c(gn), the o-field generated

@
by rectangles with Bie gn). Let BQ be the o-field generated by

all rectangies of the form B = [w:wie Bi' n<i<nm}, Bie Qn. Let p

be a probability measure on the measurable space (da, 3;) yielding a

@™
probability space (Q ,S;,p). The sequence of coordinate functions

X :ﬁfﬁ 7 defined by xn(m) = w

5 .4 -]
5 hr B = eee,=1,0,1,... on (Q ,ﬂn,u)

forms a random process and is denoted either by [Q, b, X] to emphasize
alphabet 2, measure g, and name X, or simply by p to emphasize

measure, or by (xn} to emphesize name.

Let T:dﬁa dn denote the shift transformation defined by

xn(Tu) = X (w). The process p 1is stationary if u(TF) = p(F)

n+l

for all F ¢ 2;. The process is ergodic if TF = F implies u(F) = 0

or 1.

n n _® n
Denote (wo.....m ) by w and define X :Q-Q by

n-1

Xn(w) = (Xo(w). Xl(w),...,xn_l(w)) = w. Let Pn denote the restriction

of p to (Qn,ﬂg), that is, if F € 8 then pn(F) = p(xn)-l(F) =

n
Q’

u(w:u“e F).

.}




Let "E denote the class of all stationary processes with alphabet

Q and let denote the class of all stationary and ergodic processes
M

with alphabet (. To avoid confusion we will offen use different names
with different measures, e.g., typical members of n% are [Q, &, X]
and [Q, v, Y].

A process [n, oy X] 1is said to be i.i.d. if for every rectangle

- 1
B = x:=381, Bie sn, we have un(B) = H: b& (Bi)‘ Let M denote the

collecticn of all i.i.d. or memoryless processes and note that

1S ) (I e
e T _
Given tws0 processes u,. € TE the generalized Ornstein distance
or o distance between » and v can be defined as follows: for
n-1 &

Z o(x,,y,)
ool

n . n -1
on(x W)t ='n

and defin2 Pc.ﬁvn) as the set of all measures pn on (anﬂn,sgxsg)

having _7 and " as coordinates, that is, pn(QnKF) = vn(F),
t
pn(F<3n) = -n(F), all Fe B;. Define the n < order distance
13
E;Q*n.vn) - inf Epon (2.1)
p PG,V

and the > distance by

PG, v)

sup B_G" 0™ : (2.2)
n

If with a slight abuse of notion we also let x" and Y" denote coor-
dinate functions on an ﬂ“ so that if 2z = (xn,yn) € nnx Q“, then
x“(z) = xn, Yn(y) = yn, then (2.1) also can be written
e = inf r:ppn(x“,y")

p e P\

4




Thus Egﬁin,vn) measures the smallest possible expected "distortion"

between r and Ve over all stochastic links preserving the

probabilistic description of each. We note 3 is the Vasershtein-

distance between the random vectors X' and Y' described by un

and " [Vasershtein, (1969)]. The following are some useful

properties of E for later use.

Properties of p [Gray, et. al., (1975) J:

: . — _,.,n n — _ n n

(i) 1lim e an» ,v ) exists and equals sup pnca AT
(ii) If w and v are i.i.d., then p@,V) = Elca',v').
(1i1) 2é,v) S PG, 1) + o(3, v) (triangle inequality).

(iv) The distance can also be defined as follows: Let PSQL,V)

be the collection of all stationary pair processes with coordinate

o o0 @ 0
processes . and Vv, that is, all measures p on (Q X Q , $Q>< BQ)

0 0 00 o
such that p(Q X F) = v(F), p(FX Q) =un(F), all F € sﬂx Bﬂ

(where w2 use T to denote the shift on dw>< dm as well as on dm).
In a similar fashion let Peﬁi,V) denote the class of all stationary
and ergcdic pair processes with p and v as coordinates.
coordirate functions (xn,Yn):QmX ﬂ”-) OQX Q by (xn,\'n)(x,y) =

(Xn(x).\‘n(y)) = (xn,yn). We have that

pG,v) = inf Epo(XO.YO) (2.3a)

p € r’sQ&.V)

Define the

Boiae s %2




and if up, v € n&,

oe,v) = int B 0(XgY,) (2.3b)
p €O G,v)

We note that (2.3b) follows from (2.3a) via the ergodic decomposition
of stationary processes [see Oxtoby (1952) or Rohlin (1949)].

Another important property of B is that it 1is the closest that
generic (typical, regular) sequences of u and v (those sequences
whose samnle averages converge to expectations of enough functions to
determine the measure) can be made to each other in a limiting Cn
sense | Gray, et., al., (1975)]. In the next section we develop
a result for sample distributions similar to that of Hampel and Parthssarathy
since the existing S result i1s not directly useful here hecause it {rvolves
a different type of sample average. The basic idea 1s that
5 closersss of two processes will imply that with high probability the
process vI1. produce close sample distributions.

Hampel used the Prohorov metric between ;1 and vl to measure
the distance between 1.1.d. processes .. and v. We can define a
Prohorov listance between processes using a generalization of Moser,
et. al., :1975) and this distance can be easily related to p by

using the Strassen-Dudley form for the Prohorov distance [Strassen (1965)

Dudley (1968)]: Define the nth order Prohorov distance

nn(»n.vn) = inf 1"ff2=p(xn.yn=ﬂn(xn.y“) > 7)s 2],
. Pl R
P V@ V) (2.4)

n n
which is the Prohorov metric between . and with respect to the

metric Pn (which generates the product topology), and

e A

i




G ,v) = sup IIn(un.vn) ; (2.5) 1
n

It is known [Strassen (1965), Dudley (1968)] that a P, achieving
the infimum exists., We have immediately using Chebychev's inequality
(as in Dobrushin (1970)] that if p" achieves Bn (i.e., E PP, = Bn'
in the Appendix it is shown that the infimum is a minimum for Polish
alphabets), then

pn(xn’yn:Qn(xn’yn)> €) < E pn%/€

= Bnm“.v“)/e

- 2
and hence choosing pncxn,vn) = € yields

pn(xn'yn:pn(xn’yn) > 3;0*".v“)1/2) < Eh(“n.vn)1/2
whence
".n(u.".v“)2 s 5 "M
% 2 —~
TG, v) S cG,v) (2.6)

so that closeness in 3 is stronger than closeness in Prohorov. In
some cases the two distances generate the same topology, however, as

the following easy Lemma shows,

Lemna 2,1
(a) If p 1is bounded, then Bn and [ generate the same topology
(and hence so do p and TI0).
(b) Given a class m of processesu such that there exists an
- * 2 * < -
a such that E up(xo.n ) < p ® , then P and nn

generate the same topology on mn,




Proof.

(a)

()

Let - be the largest value of p, then if pn yielgs

nn we have
n n n n n n n n n
Epnpn(x Y ) s Hn(“ Vv ) +p (x 'y :p“(x 'Y ) >

nn(“n'vn))pmax = an*“'vn)(l g pmax)

and hence small Hn implies small En which with (2.6)
proves (a).

We have similar to before that
n_n n n n,n n n n
Epaon(.‘( Y) = Hn(,-'. v ) +f dp (x,y )on(x W )

n X n._n
X v.".‘:on(xnpyn)>nn(u WV )

Let G = [x“,y“:pn(x“,y“) > “n(,“,rn)) and let 1 be the

G
indicator function for G Since Dn is a metric, we have

f-om the triangle inequality and the Couchy-Schwartz inequality

n n n n * *
E pnan(x ,Yn)s ﬂnﬁﬁ , v )+E pn:n(x ,a “)IG+E pnon(Yn,n n)l

G
o n n n _*n.2 .1/2 2,1/2
- ﬂnﬁz yV )+ (E pnpn(k o i i’ (E pnIG)
n .2 1/2 2.1/2

+ (E pnpn(Y A ) ) (E pan)
£ N (p.",v") + 20*1/2') (G),

n n
= Gt as2e™

completing the proof as before.

— |




We use 3 and not T as a distance measure on observation processes

for several reasons, priqarily because 3 has several properties useful
for robustness (and other) studies that T does not. In particular,
(1) the supnTIn need not be achieved in the limit n - = as is p.

As a result there is no process definition for II = I(u,v) analogous

to (2.3). This means there need not exist a single stationary p such
that p(x.y:on(xn,yn)3> M < for all n. The p yielding p,
however, guarantees that g (,v) = Ep p(xo,Yo) = Ep pn(xn,Yn) and

hence via Chebychev's inequality it is true that p(x,y:pn(xn,yn)-> 31/2

-1/2

< p for all n. This uniform bound for all n 1is crucial to prove

)

robustness. (2) If p and v are i.i.d., then p = E& and hence
margina! closeness of 'El in such a case guarantees process closeness
of E. The analog is not true for Prohorov, that is, it is not true

for u, i.i.d. that TG,v) = KIO&I,VI). It need not even be true

that given € 0 there exists a § such that nl(pl,vl) < § 1implies

T@,v) € 2. Thus marginal closeness of Prohorov does not ensure process
closeness for i.i.d. processes. As a result, using I(.,v) as a closeness
notion would not be a strict generalization of Hampel's definition of
robustness for i.i.d. processes. (3) The p distance between processes
can often be explicitly evaluated or bounded (as in the Gaussian case)
making it useful in applications. No general bounds to 1T (except in

terms of 3 via (2.6)) exist., (4) It is 3 and not [T that allows

a simple demonstration that close processes likely produce sample functions
with close sample distributions (as in the next section). Hampel's
Porohorov approach worked in the i.i.d. case because he was able to

produce an i.i.d. pair process p with the correct coordinates by




simply taking the i.i.d. process with the marginal yielding Hl(plwl).
If » and v were not i.i.d., p constructed in this way would not
have u and v as coordinates. The © avoids this problem since it
has an equivalent definition in terms of processes.

As a final observation, one could also define a Prohorov distance

on processes via

=S
- 1]
P (x,y) = Z 2 Px; ¥ )/ (L+p(xy,y,))
i==
me,v) = int inf(r:p(x,y:p_(x,y) > r) < r}
p € Ps(l-‘-v./)
This dis-ance generates the weak topology on 73, but it is of limited

use beczuse if "favors'" times near zero in detemining the metric Py
n-1

-1
It is zte limiting behavior of B o 1=0 c(xi.yi) and not p_ that

is impor-art in most applications (such as robustness and problems in
informat:on theory). In particular, small E will be seen to force

-
n-1

n-1 Z;_F :(xi,yi) to be small for all n with high probability, T'

is not "szrong" enough to imply this.
Ever though we have argued that E is the appropriate distance

measure on processes, the Prohorov metric is quite adequate as a

measure of distance of random variables, and hence for many intermediate

steps we will use the weaker Prohorov distance to follow Hampel's basic

approach where possible.
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3. Sample Distributions

Hampel (1975) following Parthasarathy (1967) considers only
marginal sample distributions of the following kind: Given an n-tuple
; 1
x € nn, define the measure W on (Q.Bn) by assigning probability
x

n-l to each x i=0,1,...,n-1 (if, say, k of the x are

i
identical, this point gets probability x/n). This assignment gives

1'

1
a measure p = on (0,30), via
x

1 =
u-'n(l"‘) = & n =
x 1:x1€F

Parthasarathy (1967) proves that for an i.i.d. process 4,

1 1
Hlo; nt ) » O ’ L-a.e. (3.1)
x o

We shalil wish to consider more general processes and parameters depending
on the whole process and not just the marginal pl. Hence we wish to
estimate more than just the marginal pl from xn. Given an n-tuple

xne Qn form an estimate of the entire underlying process as follows:

Form the periodic string x = (...,x ,x",x",...), that is, x. =

k- “kmod n
ol

@ o
Define the measure L n o0 «Q .39) by placing probability n on

x

each string Ti;, i=0,1,...,n-1 (grouping together identical strings
as before), that is,

b = I . all Feg (3.2)

- Q
e 1:T1x € F

The process is periodic as defined by Parthasarathy (1961) since

L
" n(F nT°F) = p n(F). all F € ﬂn. It is also easily seen to be
x x

11
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stationary from (3.2). Furthermore, if TG = G and hence T-lG =G,
then if Ti; € G for any i, then TJ; € G for all j and hence

n n(G) =0 or 1 and the process is ergodic. The process g s has
x x

restrictions u : which assign measure n 1 to each k-tuple obtained
X

by viewing k adjacent symbols within x  or an "overlap" k-tuple
constructed by (xi""’xn-l’xo""'xk+1—n)’ i = n-k+1,...,n-1. In

1
particular, u B is the same as the Parthasarathy marginal sample
x
distribution. Note that only if k S n are the sample distributions
" but it is in fact the sample distributions : ,m2 k ,
x

"trustworthy,

that will be most important. This raises an alternate (and more common)
n
approac: of given x , define the restrictions (and not a process)

o : by essigning (n-k)-'l to each of the (n~k) k-tuple within x".

X

We do nct take this approach since (1) it is useful t6 have a process
implyinz all the restrictions; (2) it is convenient to have n-1 be
the probibility of the atoms for all k and the resulting proofs are
simpler; and (3) properties of periodic processes make it easy to
demonstrzte that a certain seemingly reasonable conjecture is in fact
false., The two approaches obviously yield identical results for
fixed k and large n since the overlap effects die out as n -» =,
The main result of this section is the following generalization of

(3.1).

12
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Lemma 3.1

1£ [q,n,X] is stationary and ergodic, then for any fixed

k) S j

k
lim ]Tk(p. n'® w-a.e,
x

n->o

*
1f, in addition, there exists a reference letter a

* *
Epp(xo") <= 9 <o ’

then for any fixed k

lim
n-o>w

Bk‘“' :;P'k) =0 ’ p-a.e.
X

such that

(3.3)

(3.4)

(3.5)

Proof.

For any G £ S; the Birkhoff ergodic theorem states that with

#=probabilicty one

n-1-1 n-1
" :(G) = n 1{ A IG(X?) + 2 IG
x i=0 i=n-k+1

k
(xi....,xn_l,xo,...,x“k_n)} > p (G)
N

Hence since 93 is countable, there is a set A € dn such that
L@ =1
and if =x €A,

all G eG™ .

1 :(G) - P'k(c) » A

x e
n n
Since @A generates 39, we have from Billingsley (1968) that for

k k
X €A, @ & - W
x
If in addition (3.4) holds, let

B = 5y a0y > L K]
. X

weakly and hence (3.3) holds.

13
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let p € P‘# n'® ) yield nk‘“ sk )o that is, p(B) < Ilk(#- o“' )l

let Uk denote the coordinate random vector of p corresponding to

13 : and Vk that corresponding to u k. We then have

X

- k k k _k k k kK _k k k
s < 1

pk(»xn.u ) Eppk(v V) nk(p.xn,.. )+Eppk(u 'V )1B(u N )

sn(» .u- Kyt E Bpp(U.a)l W vk

i=0
-1 k=1 k
R Ep(V.an W* v
i=0

and hence from the Cauchy-Schwartz inequality and the stationarity of

*on am o
X
- e Kol -1 1/2
P g2 ) S 'ka E o Y Ry 2 (E p(Vi.a )
x i=0
1/2
b k-l Z (Ep(V.a)) )
i=0
RN R T RIS R R IR e
x
-1
< nkqs SO D pex,,aH?2 4 M2
i=0

* 2 #
As n - =, the sum goes to Ehp(vo,a )" < p and hence with

probability one

*1/2

lim c (M n,p ) < lim T () ,u )(1+2p Joe

n>e X - x

completing the proof.
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One might hope that a stronger result would hold to the effect that

PG a#) > 0 or M@ ) >0 W-a.e. That ™ n'*) 2 0 is impossible,
x x x

however, even for general finite alphabet processes since in that case
with p being the Hamming (discrete) metric convergence in 3 (in
this case called d and being Ornstein's distance) implies convergence
in entropy [ shields (1975)], yet periodic processes have entropy zero
and hence cannot converge in ; to a process with nonzero entropy.
Furthermore, in this case we have seen that p and 1T are equivalent
metrics a2nd hence it is not possible for TG n,p) -0 »-a.e. for
nontrivial processes. Roughly speaking, samp;e distributions can describe
the kth order restrictions of a process to arbitrary accuracy as

n > o ard any fixed k, but they cannot approximate the kth order
restrictiors for all k simultaneously, thereby forcing supknk to

zero. Tzis observation leads to some of the definitions generalizing

those cof Hanpel to stationary ergodic processes.
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4. Sequences of Estimators

A sequence of estimators [Sn] is a sequence of measurable
mappings Sn:nqa A, n=1,2,,,. where the parameter space A 1is a
Polish space with metric d and 8, 1is the Borel g-field of subsets
of A. Unlike Hampel, we do not consider Sn to depend on its argument

x" only through pln, that is, Sn(xn) is not assumed to be invariant
x

under permutations of x'. In addition, A need not be mk with the
Euclidean metric as in Hampel, allowing more general function spaces.

In some cases there will exist a "true" value S@) of the parameter

of the vrucess P being estimated by the sequence [Sn}. Analogous

to a special case considered by Hampel, 1if S:me - A 1is the mapping
giving the "true" parameter, one candidate for the sequence of estimators

is S (xn) = Si(s n)' the parameter associated with the periodic process

n
x
obtained from the sample n-tuple. Examples are the sample mean

(s ") = n.-1 ZP-I x,) and sample correlation
n i=0 i
n -1 <n-1
(Sn(x =1 <40 ximodnx(i¢r)mod n) which are simply the mean and
cor:st ! ~ion of the process L = Certain results analogous to those of

x
Hampel “il1l be proved for this special case.

Definition
(i) A parameter S:w% - A 1s said to be weakly continuous at g
with respect to the o distance if given €> 0 there exists a
8> 0 such that pG,v) < § implies d(S@),S(v)) < e
(i1) A parameter s:w% -+ A 1s said to be strongly continuous with
respect to the 3 distance if given €> 0 there exists a positive

integer k and a §> 0 such that if Bk(p.k,vk)< 6, then

16




d(s®),s(v)) < e

(iii) A parameter s:"b -» A is said to be,.simply, strongly continuous
(or strongly continuous with respect to the Prohorov distance) if
given €> 0 there exists a positive integer k and a § > 0 such that
12 LG5V <8, then d(s@),s(v) < e

It follows from the properties of the distance that strong continuity

= gtrong continuity with respect to the p distance = weak continuity
with respect to the B distance.

The strong notions of continuity are required when considering
sample d:istributions as there the conditions of Hk or E& being small
can be met, while the condition of small p in general cannot.

I£ undsr u a sequence of estimators [Sn} converges in probability
(under .) toc a value S_(u), that is, if for all €> 0

lim p(x:d(S (x),5,6)>€ = o , (4.1)
no o
then we sav {sn} is consistent for S_(+) under .. As pointed out
by Hampel. S_(:) need not be the same as the "true" parameter value
S@), but in such a case S_(u) might be a better definition of the
"true'" pzrameter given the S -
A seguence of estimators [sn) on a process . induces a family

of probability measures p“s;l on (A,ﬂA) defined by

n_-1 n, -1
kS (F) = p (sn (F)) » all F € 8, (4.2)

17
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Lemma 4.1

1f S:ﬂb -» A is

(1) a strongly continuous parameter at p € wg, or

(1ii) a strongly continuous parameter at p € me with respect to
the B distance and there exists a reference letter in the
sense of (3.4),

then the sequence of estimators [Sn] given by Sn(xn) = S(n n) is con-
sistent for S at u. s

Proct,.
\ e k k| <
(i) Givem €> 0, chose k, § such that 1T G ,v ) < § implies
k
d(SG),S(v)) < €. From Lemma 3.1, there is an n, sufficier

large to ensure that if n 2 no, then p(x:HRG; :,pk) > §) < ¢,
x

k

n
X

n=n .Hk)>5)

Ol

<S¢ n2n

and hence p(x:d(Sn(xn),SQ;)) > €) s p(x:nko.
o’ coitpleting the proof. ;

(ii) As in (i) with T replaced by Ek'

K

lLastly, let “d denote the Prohorov distance between measures on

(A,BA) with respect to the metric d.

18
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S. Robust Sequences

Definition.
Given a collection of processes m,c:ng. a sequence of estimators
[sn] is robust for m at a process p if given €> 0 there is a
8> 0 such that for all n and all processes Vv € 7,
@ 56, <6 = MePsttsh<e
The definition is intuitively the same as Hampel's: A robust

sequence is one for which close observation processes imply uniformly

(over n) close estimate distributions. Hampel defines robustness
) only at i.i.d. processes and only for My ? the class of all 1.i.d.
processes. In the case of "h' (A) is equivalent to

l,vl), the marginal distance being small. Since

Pph,v) = Blm

IS0 et R |

,vl), robustness at an i.i.d. process for M in cur
sense is slightly weaker than Hampel's robustmess. If p is bounded

or we add the constraint to "\’n that there exist a reference letter as
in Lemma 2.1, then for ™ the two notions for robustness at an i.i.d.

process are equivalent.

The following auxilliary definitions will prove useful.

Definition.
(i) A sequence of estimators {Sn} is asymptotically robust for a

collection *..‘-,C'm,s at p if given €> 0 there isa §> 0

and an n, such that for all n 2 n, and processes v € m

(A) holds true.

(i1) A sequence of estimators [snl is small sample robust for a

collection 'r.-..Crr\s at p if for any integer n_ and any

o
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€> 0 there isa 6> 0 such that (A) holds for all

n = l,2....,n0.

Lemma 5.1

If a sequence [sn] is both asymptotically robust and small sample

robust for m at p, then it is robust for m at u.

Proof.

Given € > 0, choose 61, n such that (A) is satisfied for

0

n = n0 cnd then 62 so that (A) is satisfied for n < no and set

6 = min(éllbg)-

The following technical definition is an asymptotic weakened version

of Hampel's cordition (B) and will play a similar role.

Definition.

Cozzition (B) is said to be asymptctically satisfied for a sequence
of estimacors fSn} and a process u if given ¢ > 0, N> 0 there
exist positive integers k and no and a 6> 0 and for all n 2 no
a set F ¢ ﬁn such that

n 0
n .
" (Fn) > 1 -1 (5.2)

and if x = Fn, yne Qn, and

kK k
MG w ) < 6 ' (5.3)
x y

where K is the Prohorov distance with respect to p as in (2.4), then

k

d(sn(xn).sn(yn)) . SR T (5.4)

20
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If we forced no =1, then the above condition would be identical
to Hampel's except for the fact that we allow a general k (which may
depend on € and n) while he requires k = 1. Hence our condition

is weaker (his condition (B) implies ours, but not conversely). The

following is analogous to Hampel’'s Lerma 1.

Lemma 5.2
If . em, and [Sn] asymptotically satisfy condition (B), then

{Sn} is asymptotically robust at 4.

rocf.
Chocse = as in (A). For (B) use the same €, set n = €/2

and let k, & , n Choose

£’ 0’
L A n n
6 = min{iy, € 4).  The key to the proof is that given. x and y ,

Fn be the promised objects for n 2 ng.

2 =
the meas:>¢ p' on (Qn,BB) which assigns probability n g to each

5 k
pair k-Tunl= X4 i=0,1,...,nk, (xi"'°'xn-l'xo""'x1+k-n)'
i = n=k-.....,n=1, is in P :,u :) and hence
n-k h-1
- k K -1 k k -1
0. S DYSE,p. =n X p.(x,,y.)+n Z o (X,pee03x .
k xn ?n p' k i=0 k i1 Lttbad ki i+k-n
y1""'yi+k-n)
=1 n-1 n _n
=n T olxy,) = p (x,y) (5.5)
1=0 y

for 211 k (and hence 30& nt *
X y
Let p be the ‘stationary process yielding gpp(xo,yo) = B(“.u)

n) is small if pn(xn,y“) is).

we have
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4 s SRS N g ’ ‘

n-1
- k -1
PG b 2 p e E oetuv)
X Y i=0

Pw,v) s b (5.6)

and hence from Chebychev's inequality

e 1 1
P(x,y:p @& :.ﬂ :) A e T s
X y
whence
p(x,y:nk(u. :.p :) > (‘)B) <
x ¥y
ey e K ) > 6t < 612
X ¥
and

n = k k 1/2
- . 0 <
p(x,y:x an,.k(‘xn,wyn) 68 )

tensf & 1-cla-ef2 & 16

which from (B) implies that with probability 1-€ ﬁ(sn(x"),sn(y“)) < ¢ i
f

and hence .dc.ns;l,vns;l) < €, completing the proof.

The following definition is a weakened version of one of Hampel's

corresponding definitions.

Definition.

A s2quence of estimators [sn] is continuous at w if given

k, n. and a 6 > 0 such that if

€ > 0, there exist positive integers 0

n
n,m2mn,, X¢€ n“, ymE ﬂm. and

E E
G kb ) o L\
g (5.7)

k k| <
nkc* ¥ ) 6

y
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then

n m
d(sn(x ),sm(y N< € . (5.8)

If a single k works for all €, we say (Sn] is continuous of order
k at p (or continuous at uk).

Hampel's definition of continuity of an estimator sequence is what
we call continuity of order 1 (or at pl). Hampel essentially restricts
his estimator sequence to depend pnly on the marginal properties of the
process. Analogous to our strong continuity of parameters, we allow the
estimator sequence to depend on higher order properties, but for a given
€> 0 tlere must be a finite k such that matching sample distributicns
of ord2r k to the underlying #k forces the estimators to match up for
long observation sequences.

Analogous to Hampel's spoecial case, if a parameter S:wg - A 1is
strongly crntiduous, then fhe sequence of estimators {Sn} defined by
Sn(xn) = S n) is continuous.

The following lemma is a strict generalization of Hampel's Lemma 2

since our continuity notion for [sn] is weaker than his.

Lem=2 5.3
1f {Sn} is continunus at p € Me+ then, under ., [Sn) is

consistent for some S_(.), that is, for any 6§>0

lim g (x:d(S_(x"),5,6)) > 6 = 0 .

n- o
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Proof.

For a sequence ¢, { 0 choose 61 | 0 and n, t ® such that the

continuity ondition is fulfilled for n,m> n (for each 1i). Define

i
for positive integers k,n and § > 0 the set

Bn(k.b) = (xntnk(ux:.uk) < 6}

and note from Lemma 3.1 that for fixed k,§

lim "B (k,6)) = 1 (5.9)
noow »

n m
From the continuity condition, if x € Bn(ki’ai)' y € Bm(ki'bi)'

n,m =2 R then d(Sn(xn),Sm(ym)) < €; and hence the set
g, = U U Sn(xn) C A (5.10)
n
n = ny X € Bn(ki,ﬁi) &

has dismeter diam(Gi) < 2¢,. Defining the set Sn(Bn(ki,ﬁi)) =

U S (xn), (5.10) can also be written
x'eB (k,,6 )"
n i1
Gi = U Snmn(kinﬁi)) .
n,m 2 ni

Note also that since all spaces are Polish, measurability of Sn implies

Bn(k.b) < ﬁA‘ Define the set
i i
&'s Ty e, = N s @B (x,6,))
- J=1 J n,mn, > 1 i 373
and let Ai denote the closure of Ai (A1 will play the role of

Hampel's A1 in our case). The A are closed and monotone decreasing

i

since A, > A and diam A1 s 2€1 { 0. Furthermore, the sets A

i i+l i

are nonempty as can be seen as follows: For fixed i and n2n we

"
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have from (5.9) that

VE u(x:sn(xn) €A = p.(x:Sn(xn)e A')

( i
n - e
> p.(x:sn(x ) € Jrjlsn(an(kj.bj))) ’
oyl
2 p(x:x e NB (k,,6,)) » 1 (5.11)
suy P - R

and hence Ai cannot be empty. Since A 1is complete and the Ai are

closed, monotone decreasing, and empty, from the Cantor intersection theorem,
there exists a single point, say So(y.), such that Ai ] S, (). Coupled

with (5.:1}, tris proves the lemma.

Corollzrvy 5.1: Given {sn], k, S () as in Lemma 5.3, given €> 0

there exiszzs a @8, k, n, such that if n2 n, and

LR )
.k(p-xngli)<6 y

—

then d(s_{-),S_(x")) < e.

Proof.

Using the notation of the previous proof, choose i so large that
= k k
i i
€2 26’.1 aad set § = 61, n=2 o, nki(uxn s e )< 61 implies

n - i ' '
sn(x ) & G, = Enisnmn(ki’bi)) DAi. Since S_(u) € A, and

diam G, < 2¢

N 4 this implies d(Sn(xn).Sﬁf.-)) < ze

i S €, completing the

proof,
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The previous corollary simply makes explicit a fact useful for the

next result that is obvious in Hampel's case.

The following theorem is the main result of this paper and is the ™y
analog to Hampel's theorem for stationary and ergodic processes and the
general sequence of estimators here considered. We show that continuity
of {Sn} implies asymptotically robust and continuity of the Sn

considered as point functions implies small sample robust.

Theoram 5.1
Let a sequence of estimators [Sn] and a p € m, be such that
1) Sn is continuous as a point function on nn for every n,
n_ n n
that is, given n, x € Q , € > 0, there existsa § = §(n,x ,¢€)
such that pn(xn,y") < § implies d(sn(x"),sn(y")) < €.

(ii) fsn} is continuous at u, p stationary and ergodic. |

Then (g > - 5
‘Sn‘ is robust for e at

Conments. Condition (i) might appear different from that of

- -1
Hampel since we use on(xn,yn) =n A z::_o-p(x ) and he uses

RA

p;(xn,yn) = maxip(xi,yi). These metrics generate the same (product)

topology, however, and hence the notions are equivalent. Recall also

that (ii) is weaker than Hampel's corresponding assumption and the

observation processes are far more general, but that our conclusion is

——

in general slightly weaker. Wc¢ also note that for large n our proof
parallels Hampel's by proving condition (B). For small n, however,
robustness is proved directly from (i ) and our proof is simpler than

Hampel's.
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S —

Proof.

First choose €> 0, n> 0 for property (B). From Lemma 5.1 and

|
| (
L ; its corollary there exists S_(), 60 > 0, n k such that for
[ ¥
r
; ety |
k Kk - n i
“'k‘“ nt B < 260 d‘s«.‘“)'sn(" )) < 'e/2 . (5.12) i
x i
5 From Lemma 3.1 there exists an n, 2 n, so large that if n 2 ny» !
i
kK k i
p(x.nko&xn,h ) > 60) < 7 ’ E

For n = 3 define Fn = {x“:nkm ,-,.;k) < 60] and note that |

T RSN T AL A AN A

%
S 8 x

D ' n n k k {
un(r )= l-q and if x € Fn' y € , then if Hk(..xn,u. n) < §. we '

0
y

have

A e kK k O
e pos ) % M@ e 5+ O g} 6 260
7 y x x
and henc: from (5.12), d(S“(u).Sn(yn)) < €/2 and therefore
d(s, 'x,5 ™) £ A5 (M), 8,6)) + d(8,0),S ") s e

proving condition (B) is asymptotically satisfied and hence by Lemma 5.2

[sn} is asymptotically robust at .

We next prove that (i) implies that [Sn] is small sample robust
at u, which by Lemma 5.1 will complete the proof. Given €> 0 as
before and any n, there exists from Parthasarathy (1967) Thm. 3.2, Ch. 3,

a compact set xn such that

.

R TS AR B NS

p"(xn) > 1-¢/4, v"(xn) > 1-¢/4 )

Since Sn:nn -+ A, it is uniformly continuous on Kn and hence there is
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n _n n._n

a Gn such that for x ,y € Kn' pn(x W ) < 6n implies
d(sn(xn),sn(yn)) < €& Choose § so small that § < min(6§,1=l,...,no,€2/4)
and let p € Pec;,v) yield pG,v) = Epp(xo,Yo) < §. We have using the

Chebychev inequality that
n n n C n C n n
p(X.y:d(Sn(x ),Sn(y )) > €)s (Kn)+v (Kn)+p(x,y:pn(x W ) > Gn)

s &2 +ptryie M > 6 s ez 4 61 s e
and hence
n_-1 1

n—
<
nd(u Sn i Sn ) (=

completing the proof,

Ta¢ oaly point in the preceding development where ergodicity was
requirad was in the use of Lemma 3.1 in Lemma 5.3 ensuring sample
distributiors of the process pu converged to the actual distribution of
i in the sense of (3.3). Tre resulting consistency of [Sn} at u
was then in turn used to prove asymptotic robustness at .. In particular,
if the process . 1s ergodic, but we allow the processes v of
Theorem 3.1 to be stationary but not necessarily ergodic, then the entire

proof goes through as before giving the following.

Corollarv 5.2: Given the conditions of Theorem 5.1, then [Sn] is robust

for n% gt [T

Tha: robustness for the class of ergodic processes implies robustness
for the class of stationary processes also can be seen from the ergodic
decomposition theorem of Rohlin (1949) which states, roughly, that every

stationary nonergodic process is a mixture of ergodic processes, that is,




can be viewed as nature first selectix;g an ergodic process (unknown to
the observer) and then sending a sample function from the ergodic
process. Thus, if v 1is stationary, the observer will actually see
some unknown ergodic comporent, say ve,
ergodic processes will ensure robustness for stationary nonergodic

processes.

Corollary 5.3: Let S:‘ms > A be such that S 1is strongly continuous at

b € L end Sn(xn) = S n) is a continuous mapping from Q" to A.
x .
Then {S_} is robust for Me at’ .

Note that if S 1s strongly continuous for all u, then
S (x') = S/ ) 1is automatically continuous as a point function from

(2.6)0

Analogous to Hampel's Lemma 3 and corollary we have the following.

Lemma 5.4

1f Sn? is robust at . €M  and consistent for S _(-.) at all

v en B E neighborhood of u, then SQ(..-.) is weakly continuous

at ..

Proo:.

Since [Sn} is robust, given € > 0 there isa § > 0 such that

- -1 n_-1
if pk,v) <6, then Hd(p.nsn Y Sn )< € all n. By consistency,

for 6§ small enough

lim p(x:d(S_(x"),S_())> €) = 0
n-oo "
lim v(y:d(s_(y"),5,(v)) > & = 0

no-o

29
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and hence if al is the measure on (A.SA) assigning probability one
to the point S_(+) and 02 that assigning probability one to

s, (v),

n_-1
Hdm sn 'a].) - 0
no®

n_-1
HT(vs ,2) - 0
d n°‘2

and hence nd(al,az) S €. Since Cz1 and a2 are degenerate, however

Hd(al'az) S £ only if d(Sa(p.).Sm(V)) < €, proving the lemma.

Coroilarv 5,4: 1If [sn) is robust and continuous for all - € 1%,

then S_(.) 1is weakly continuous at all .
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6. Discussion and Applications

Our approach allows the construction of robust estimators for

th
parameters included in the K order (K finite, fixed) restriction

(nx,ag,ux) of an ergodic stationary process [n.u,x]. Such parameters

are the moments of order less than or equal to K,

The M-estimation S_(1) of a scalar parameter S included in

(nx,ag,ux) will be now the solution (if it exists) of the expression

[Huber (1964), Huber (1972)]

i V(xl,...,xK,Sm(u))uK(dxl,...,de) = 0 6.1)

K
Bﬂ

As in the i.i.d. case, the sequence of estimators (Sn] defined by

n-X

(Sn ;(:1,...,x1+x,sn) = 0) 1is robust if the solution is (6.1) is

e

bt

unique aai ¥ is bounded. In other words, one shouldllook for bounded,
"smooth" “unctions v with zero K% expectation.

For the robust estimation of a location parameter, in particular,
i-estinat-rs, L-estimators or R-estimators, can be used again [Huber
(1972)°, ~“here the first order restriction [nl,ﬂé,ul] of the ergodic
stationar- process [n,u.x] is considered. For the M-estimators, we
may use t:he Kth restriction [nx,mg,ux] instead and recover the
estimate from the expressim:

[ oveegs ) xems ) wiG@x,enax) = 0 (6.2)

K
20

The asymptotic distribution of the estimate S_(u) can be found by

methods similar to the ones used by Huber (1964).
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New estimators determined through new functionals of the data may
be considered, where the properties of the functionals may be determined

through the conditions in Theorem 5.1.
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APPENDIX A: Equations (2.1) and (2.3a) are actually minima. (The
proof is due to P.C. Shields.)

Since  and hence d’ are complete, separable metric spaces,
any measure | on (d’,s;) is tight, that is, for any €> 0 there
is a compact set F such that p(F) = l-€ [Parthassarathy (1967),
Thm. 3.2, p. 29]. If one has a family of measures such that given ¢
there is a compact set F such that all members of the family place
measure at least 1 -8 on F, then the family is compact in the weak
topology - Parthasarathy (1967), Thm. 6.7, p. 47]. Given u, v choose
compact F ¢ 32 such that u(F) 2 1 - ¢/2, V(F) > 1 - ¢/2, then if
P ¢ Ps(ﬂ,v), P(FX F)21-¢ and FX F is compact. Thus P.(p,v)

is compac: in the weak topology and a sequence P € Ps(u.V) such that
- s N
s ETnp(xo.ﬁo) p(,v) + 1/n

will have a subsequence -- say pn -~ that converges in the weak topology
x

to a limiting p. The limit p ¢ P _(4,v) and Ep(Xy,Yy) = Pu,v),

completing the proof. The same argument applied to (Q",B;) shows that

Bn is also actually a minimum.
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